Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
28th IEEE International Conference on Engineering, Technology and Innovation, ICE/ITMC 2022 and 31st International Association for Management of Technology, IAMOT 2022 Joint Conference ; 2022.
Article in English | Scopus | ID: covidwho-2285889

ABSTRACT

The paper contributes to existing research on transmission of infectious diseases in indoor environments, with a focus on the SARS-Co V -2 virus, considered in an environment with a potentially high infectious risk, i.e. a university building. A multi-functional zone with variable occupancy schedules involving both students and staff is used as a case study. A computational fluid dynamics (CFD) model is developed to simulate and analyze three scenarios involving mixed, mechanical, and natural ventilation. Based on the physical and operational configuration of the selected zone, initial results show that mechanical ventilation involves areas of stagnant air (i.e. air velocity is less than 0.1m/s), while reliance on natural ventilation leads to increase in C02 levels. Hence, a mixed mode (natural and mechanical) ventilation is suggested. Then, based on the probability of the presence of (an) infected individual(s), considering the local COVID-19 incidence rate, initial estimates suggest that the Delta variant requires the air change rate (ACH) to be increased more than 1000 times, when compared to the original strain. The paper thus establishes a correlation between the prevalence of a given SARS-Co V -2 variant with the required air change rate, emphasizing the need to factor in not only the presence of infected individual(s), based on the local incidence rate, but also the viral charge of the dominant SARS-Co V -2 variant. The paper argues the need for a better controlled and optimized ventilation to ensure safer indoor environments. © 2022 IEEE.

2.
Sustain Cities Soc ; 87: 104232, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2183253

ABSTRACT

Under the global landscape of the prolonged COVID-19 pandemic, the number of individuals who need to be tested for COVID-19 through screening centers is increasing. However, the risk of viral infection during the screening process remains significant. To limit cross-infection in screening centers, a non-contact mobile screening center (NCMSC) that uses negative pressure booths to improve ventilation and enable safe, fast, and convenient COVID-19 testing is developed. This study investigates aerosol transmission and ventilation control for eliminating cross-infection and for rapid virus removal from the indoor space using numerical analysis and experimental measurements. Computational fluid dynamics (CFD) simulations were used to evaluate the ventilation rate, pressure differential between spaces, and virus particle removal efficiency in NCMSC. We also characterized the airflow dynamics of NCMSC that is currently being piloted using particle image velocimetry (PIV). Moreover, design optimization was performed based on the air change rates and the ratio of supply air (SA) to exhaust air (EA). Three ventilation strategies for preventing viral transmission were tested. Based on the results of this study, standards for the installation and operation of a screening center for infectious diseases are proposed.

3.
Comput Electron Agric ; 196: 106907, 2022 May.
Article in English | MEDLINE | ID: covidwho-1763666

ABSTRACT

The distribution of agricultural and livestock products has been limited owing to the recent rapid population growth and the COVID-19 pandemic; this has led to an increase in the demand for food security. The livestock industry is interested in increasing the growth performance of livestock that has resulted in the need for a mechanical ventilation system that can create a comfortable indoor environment. In this study, the applicability of demand-controlled ventilation (DCV) to energy-efficient mechanical ventilation control in a pigsty was analyzed. To this end, an indoor temperature and CO2 concentration prediction model was developed, and the indoor environment and energy consumption behavior based on the application of DCV control were analyzed. As a result, when DCV control was applied, the energy consumption was smaller than that of the existing control method; however, when it was controlled in an hourly time step, the increase in indoor temperature was large, and several sections exceeded the maximum temperature. In addition, when it was controlled in 15-min time steps, the increase in indoor temperature and energy consumption decreased; however, it was not energy efficient on days with high-outdoor temperature and pig heat.

4.
Environ Int ; 162: 107153, 2022 04.
Article in English | MEDLINE | ID: covidwho-1706132

ABSTRACT

Since December 2019, coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a great challenge to the world's public health system. Nosocomial infections have occurred frequently in medical institutions worldwide during this pandemic. Thus, there is an urgent need to construct an effective surveillance and early warning system for pathogen exposure and infection to prevent nosocomial infections in negative-pressure wards. In this study, visualization and construction of an infection risk assessment of SARS-CoV-2 through aerosol and surface transmission in a negative-pressure ward were performed to describe the distribution regularity and infection risk of SARS-CoV-2, the critical factors of infection, the air changes per hour (ACHs) and the viral variation that affect infection risk. The SARS-CoV-2 distribution data from this model were verified by field test data from the Wuhan Huoshenshan Hospital ICU ward. ACHs have a great impact on the infection risk from airborne exposure, while they have little effect on the infection risk from surface exposure. The variant strains demonstrated significantly increased viral loads and risks of infection. The level of protection for nurses and surgeons should be increased when treating patients infected with variant strains, and new disinfection methods, electrostatic adsorption and other air purification methods should be used in all human environments. The results of this study may provide a theoretical reference and technical support for reducing the occurrence of nosocomial infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Humans , Patient Isolators , Risk Assessment
5.
Am J Infect Control ; 49(6): 808-812, 2021 06.
Article in English | MEDLINE | ID: covidwho-1384851

ABSTRACT

BACKGROUND: With healthcare shifting to the outpatient setting, this study examined whether outpatient clinics operating in business occupancy settings were conducting procedures in rooms with ventilation rates above, at, or below thresholds defined in the American National Standards Institute/American Society of Heating, Refrigerating and Air-Conditioning Engineers/American Society for Health Care Engineering Standard 170 for Ventilation in Health Care Facilities and whether lower ventilation rates and building characteristics increase the risk of disease transmission. METHODS: Ventilation rates were measured in 105 outpatient clinic rooms categorized by services rendered. Building characteristics were evaluated as determinants of ventilation rates, and risk of disease transmission was estimated using the Gammaitoni-Nucci model. RESULTS: When compared to Standard 170, 10% of clinic rooms assessed did not meet the minimum requirement for general exam rooms, 39% did not meet the requirement for treatment rooms, 83% did not meet the requirement for aerosol-generating procedures, and 88% did not meet the requirement for procedure rooms or minor surgical procedures. CONCLUSIONS: Lower than standard air changes per hour were observed and could lead to an increased risk of spread of diseases when conducting advanced procedures and evaluating persons of interest for emerging infectious diseases. These findings are pertinent during the SARS-CoV-2 pandemic, as working guidelines are established for the healthcare community.


Subject(s)
COVID-19 , SARS-CoV-2 , Ambulatory Care Facilities , Humans , Pandemics , Ventilation
6.
Sustain Cities Soc ; 72: 103051, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1253619

ABSTRACT

With the arrival of the SARS-CoV-2 coronavirus, the scientific academia, as well as policymakers, are striving to conceive solutions as an attempt to contain the spreading of contagion. Among the adopted measures, severe lockdown restrictions were issued to avoid the diffusion of the virus in an uncontrolled way through public spaces. It can be deduced from recent literature that the primary route of transmission is via aerosols, produced mainly in poorly ventilated interior areas where infected people spend a lot of time with other people. Concerning contagion rates, accumulated incidence or number of hospitalizations due to COVID-19, Spain, and Italy have reached very high levels. In this framework, a regression analysis to assess the feasibility of the indoor ventilation measures established in Spain and Italy, with respect to the European framework, is here presented. To this aim, ten cases of housing typology were and analyzed. The results show that the measures established in the applicable regulations to prevent and control the risk of contagion by aerosols are not adequate to guarantee a healthy environment indoors. The current Italian guidelines are more restrictive than in Spain, yet the ventilation levels are still insufficient in times of pandemic.

7.
Sci Total Environ ; 789: 147764, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1230771

ABSTRACT

The World Health Organization (WHO) announced that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may spread through aerosols, so-called airborne transmission, especially in a poorly ventilated indoor environment. Ventilation protects the occupants against airborne transmission. Various studies have been performed on the importance of sufficient ventilation for diluting the concentration of virus and lowering any subsequent dose inhaled by the occupants. However, the ventilation situation can be problematic in public buildings and other shared spaces, such as shops, offices, schools, and restaurants. If ventilation is provided by opening windows, the outdoor airflow rate depends strongly on the specific local conditions (opening sizes, relative positions, climatic and weather conditions). This study uses field measurements to analyze the natural ventilation performance in a school building according to the window opening rates, positions, and weather conditions. The ventilation rates were calculated by the tracer gas decay method, and the infection risk was assessed using the Wells-Riley equation. Under cross-ventilation conditions, the average ventilation rates were measured at 6.51 h-1 for 15% window opening, and 11.20 h-1 for 30% window opening. For single-sided ventilation, the ventilation rates were reduced to about 30% of the values from the cross-ventilation cases. The infection probability is less than 1% in all cases when a mask is worn and more than 15% of the windows are open with cross-ventilation. With single-sided ventilation, if the exposure time is less than 1 h, the infection probability can be kept less than 1% with a mask. However, the infection probability exceeds 1% in all cases where exposure time is greater than 2 h, regardless of whether or not a mask is worn. Also, when the air conditioner was operated with a window opening ratio of 15%, power consumption increased by 10.2%.


Subject(s)
Air Pollution, Indoor , COVID-19 , Humans , SARS-CoV-2 , Schools , Ventilation
8.
Build Environ ; 195: 107760, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1116397

ABSTRACT

Viable aerosols in the airflow may increase the risk of occupants contracting diseases. Natural ventilation is common in buildings and is accompanied by re-entry airflow during the ventilation process. If the re-entry airflow contains toxic or infectious species, it may cause potential harm to residents. One of the Covid-19 outbreaks occurred in a public residential building at Luk Chuen House (LC-House) in Hong Kong. It is highly suspected that the outbreak of the disease is related to the re-entry airflow. The study attempts to explain and discuss possible causes of the outbreak. In order to understand the impact of airflow on the outbreak, a public residential building similar to LC-House was used in the study. Two measurements M - I and M - II with the same settings were conducted for a sampling unit in the corridor under low and strong wind conditions respectively. The sampling unit and the tracer gas carbon dioxide (CO2) were used to simulate the index unit and infectious contaminated airflow respectively. The CO2 concentrations of the unit and corridor were measured simultaneously. Two models of Traditional Single-zone model (TSZ-model) and New Dual-zone model (NDZ-model) were used in the analysis. By comparing the ACH values obtained from the two models, it is indicated that the re-entry airflow of the unit is related to the corridor wind speeds and this provides a reasonable explanation for the outbreak in LC-House, and believes that the results can help understand the recent frequent cluster outbreaks in other residential buildings.

9.
Build Environ ; 197: 107633, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1056396

ABSTRACT

The COVID-19 pandemic has raised concern of viral spread within buildings. Although near-field transmission and infectious spread within individual rooms are well studied, the impact of aerosolized spread of SARS-CoV-2 via air handling systems within multiroom buildings remains unexplored. This study evaluates the concentrations and probabilities of infection for both building interior and exterior exposure sources using a well-mixed model in a multiroom building served by a central air handling system (without packaged terminal air conditioning). In particular, we compare the influence of filtration, air change rates, and the fraction of outdoor air. When the air supplied to the rooms comprises both outdoor air and recirculated air, we find filtration lowers the concentration and probability of infection the most in connected rooms. We find that increasing the air change rate removes virus from the source room faster but also increases the rate of exposure in connected rooms. Therefore, slower air change rates reduce infectivity in connected rooms at shorter durations. We further find that increasing the fraction of virus-free outdoor air is helpful, unless outdoor air is infective in which case pathogen exposure inside persists for hours after a short-term release. Increasing the outdoor air to 33% or the filter to MERV-13 decreases the infectivity in the connected rooms by 19% or 93% respectively, relative to a MERV-8 filter with 9% outdoor air based on 100 quanta/h of 5 µm droplets, a breathing rate of 0.48 m3/h, and the building dimensions and air handling system considered.

10.
Otolaryngol Head Neck Surg ; 163(6): 1134-1136, 2020 12.
Article in English | MEDLINE | ID: covidwho-1042348

ABSTRACT

The outbreak of novel coronavirus disease 2019 (COVID-19) has had a momentous impact on the field of otolaryngology due to the high number of aerosol-generating procedures involving the upper aerodigestive tract. These procedures bear significant risk to the provider and clinical environment due to the possibility of viral aerosolization. While significant attention has been appropriately paid to personal protective equipment during this pandemic, an understanding of industrial hygiene is also necessary for the safe delivery of health care to mitigate the risk of exposure to other patients and health care workers. We provide a review of air ventilation practices and their role in reducing pathogen spread. In addition, we share our experiences with effectively treating COVID-19-positive patients aboard the USNS Comfort through proper environment control measures.


Subject(s)
COVID-19/prevention & control , Disease Transmission, Infectious/prevention & control , Infection Control/methods , Pandemics , Patient Isolators , COVID-19/transmission , Health Personnel , Humans , New York City , Otolaryngology , Personal Protective Equipment , SARS-CoV-2 , Ships , Ventilation
11.
Otolaryngol Head Neck Surg ; 163(4): 676-681, 2020 10.
Article in English | MEDLINE | ID: covidwho-459394

ABSTRACT

As rhinologists return to practice amid SARS-CoV-2, special considerations are warranted given the unique features of their subspecialty. Rhinologist manipulation of nasal tissue, proximity, and frequent aerosol-generating procedures (AGPs) create high risk for infection transmission. There are 4 areas of special consideration to mitigate risk: (1) previsit planning for risk stratification/mitigation, (2) appropriate personal protective equipment, (3) preprocedural testing, and (4) environmental controls. During previsit planning, risk factors of the patient and procedures are considered. High-risk AGPs are identified by duration, proximity, manipulation of high-viral load tissue, and use of powered instrumentation. Appropriate personal protective equipment includes selection of respiratory and eye protection. COVID-19 testing can screen for asymptomatic carriers prior to high-risk procedures; however, alternative testing methods are required in rhinologic patients not eligible for nasopharyngeal testing due to nasal obstruction or skull base defects. Last, AGPs in rhinologic practices require considerations of room air handling and environmental controls.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Delivery of Health Care/organization & administration , Disease Transmission, Infectious/prevention & control , Otolaryngology/organization & administration , Pandemics , Personal Protective Equipment/supply & distribution , Pneumonia, Viral/epidemiology , COVID-19 , Coronavirus Infections/transmission , Humans , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL